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Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful
life events, trauma, and chronic adversity can have a substantial impact on brain function
and structure, and can result in the development of posttraumatic stress disorder (PTSD),
depression and other psychiatric disorders. However, most individuals do not develop such
illnesses after experiencing stressful life events, and are thus thought to be resilient.
Resilience as successful adaptation relies on effective responses to environmental
challenges and ultimate resistance to the deleterious effects of stress, therefore a
greater understanding of the factors that promote such effects is of great relevance.
This review focuses on recent findings regarding genetic, epigenetic, developmental,
psychosocial, and neurochemical factors that are considered essential contributors to the
development of resilience. Neural circuits and pathways involved in mediating resilience
are also discussed. The growing understanding of resilience factors will hopefully lead to
the development of new pharmacological and psychological interventions for enhancing
resilience and mitigating the untoward consequences.
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INTRODUCTION
Resilience is the capacity and dynamic process of adaptively
overcoming stress and adversity while maintaining normal psy-
chological and physical functioning (Russo et al., 2012; Rutter,
2012b; Southwick and Charney, 2012). Every individual experi-
ences stressful events and the majority are exposed to trauma at
some point during life. Therefore, understanding how one can
develop and enhance resilience is of great relevance to not only
promoting coping mechanisms but also mitigating maladaptive
coping and stress response in psychiatric illnesses such as depres-
sion and posttraumatic stress disorder (PTSD). Although the
understanding of resilience is overall still at an early stage, recent
investigations have identified mechanisms encompassing genetic,
epigenetic, developmental, psychological, and neurochemical fac-
tors that underlie the development and enhancement of resilience
and factors that predict vulnerability to stress and susceptibility to
psychiatric disorders in the face of stress and trauma. This review
outlines discoveries from recent years from studies that have
considerably advanced our understanding of resilience to stress
and trauma and will likely move forward the development of
pharmacological and psychological interventions for enhancing
resilience.

GENETIC FACTORS IN RESILIENCE
Genetic factors contribute significantly to resilient responses to
trauma and stress. A range of human genes and polymorphisms
associated with NPY, HPA axis, noradrenergic, dopaminergic and
serotonergic systems, and BDNF have been linked to resilient
phenotypes (Table 1) (Feder et al., 2009; Russo et al., 2012).

NEUROPEPTIDE Y (NPY)
NPY is a neuropeptide that produces anxiolytic effects and pro-
motes protective responses in the face of stress (Wu et al., 2011).
Several studies in humans showed that genetic variations of
NPY contribute to individual susceptibility to stress. One recent
study found that two NPY haplotypes represented by three sin-
gle nucleotide polymorphisms (SNPs) correlated with increased
susceptibility to anxiety disorders after childhood adversity, and
suggested that such behavioral effects can be mediated by altered
NPY expression and subsequently dampened HPA-axis respon-
siveness under the influence of the genetic variation (Donner
et al., 2012). Other studies also demonstrated that NPY release
was substantially mediated by genetic variations in the NPY locus,
especially in the promoter region, and that lower haplotype-
driven NPY expression predicted weakened resilient response to
stress (Zhou et al., 2008; Zhang et al., 2012).

HPA AXIS (HYPOTHALAMIC-PITUITARY-ADRENAL AXIS)
Alterations in genes that regulate HPA-axis functions play an
important role in shaping resilience. Polymorphisms in two
key HPA-axis genes, CRHR1 [corticotropin-releasing hormone
(CRH) receptor 1 gene] and FKBP5 (FK506-binding protein
5 gene), have been found to interact with early life stress to
predict susceptibility to psychiatric illnesses in adults (Gillespie
et al., 2009). One study identified, in two independent popula-
tions, significant gene × environment interactions with several
individual SNPs of the CRHR1 gene that influenced the risk of
developing adult depressive symptoms in individuals with a his-
tory of child abuse (Bradley et al., 2008). The FKBP5 gene, which
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Table 1 | Genetic factors in resilience.

CNS systems Genes related to resilience Influences of polymorphisms on resilience References

NPYergic Neuropeptide Y gene (NPY ) Increased susceptibility to anxiety disorders after
childhood adversity.

Donner et al., 2012

HPA Axis CRH receptor 1 gene (CRHR1) Affected the likelihood of developing adult
depressive symptoms from child abuse.

Bradley et al., 2008

FK506-binding protein 5 gene (FKBP5) Predicted severity of adult PTSD symptoms and
onset of depression in individuals with childhood
trauma.

Binder et al., 2008;
Zimmermann et al., 2011

Noradrenergic and
Dopaminergic

Catechol-O-Methyltransferase gene
(COMT )

Influenced the risks of developing PTSD and
deficits in stress response and emotional
resilience.

Heinz and Smolka, 2006;
Skelton et al., 2012

Dopaminergic Dopamine transporter gene (DAT1) Contributed to susceptibility to PTSD with a
history of trauma.

Segman et al., 2002

Dopamine receptor genes (e.g., DRD2,
DRD4)

Induced differential emotional processing and
variability in brain responses to emotional stimuli;
Influenced vulnerability to stress and trauma and
risk of developing PTSD.

Blasi et al., 2009; Ptacek
et al., 2011

Serotonergic Promoter region of serotonin transporter
gene (5-HTTLPR)

Short allele strongly associated with increased
stress sensitivity and risk for depression upon
stress exposure, especially early life stress.

Karg et al., 2011

Serotonin receptor genes (e.g., HTR1A,
HTR3A, HTR2C)

Interacted with environment to mediate stress
response and to predict susceptibility to
depression.

Gatt et al., 2010; Kim et al.,
2011a; Brummett et al., 2012

BDNF Brain-derived neurotrophic factor gene
(BDNF )

Interacted with early life stress to predict
syndromal depression and anxiety; no clear
evidence of association between the Val66Met
polymorphism and anxiety disorders.

Frustaci et al., 2008; Gatt
et al., 2009

is involved in the modulation of glucocorticoid receptor (GR)
activity and thereby glucocorticoid signaling, was also found to
interact with child abuse through its four SNPs to predict sever-
ity of adult PTSD symptoms (Binder et al., 2008). A more recent
study showed that interactions between genetic variants of FKBP5
and early life trauma strongly predicted the onset of depression
later in life (Zimmermann et al., 2011).

NORADRENERGIC AND DOPAMINERGIC SYSTEMS
Polymorphisms in the noradrenergic and dopaminergic sys-
tems have also been associated with vulnerability to depres-
sion and PTSD. Catechol-O-Methyltransferase (COMT) is
an enzyme that metabolizes catecholamines including nore-
pinephrine, epinephrine and dopamine. The COMT Val158Met
polymorphism has been linked to deficits in stress response
and emotional resilience, and was found to influence the risk
for development of PTSD (Heinz and Smolka, 2006; Skelton
et al., 2012). In an important study, Kolassa and colleagues
showed that, predictably, higher numbers of different lifetime
traumatic event types led to a higher prevalence of lifetime PTSD
but that this effect was, in a typical gene-environment interac-
tion fashion, modified by gene polymorphism (Kolassa et al.,
2010). Compared to Val158Met polymorphism, the low-activity

Met/Met homozygotes, with higher levels of norepinephrine and
dopamine, exhibited a higher risk for PTSD. Children carry-
ing the Met allele showed a higher cortisol response to stress.
However, children who had more stressful life events showed a
smaller increase in cortisol, implying that they might be more
resilient (Armbruster et al., 2012). This study demonstrated dif-
ferential effects of genetic and environmental factors on reaction
to stress. Polymorphisms in the dopamine receptor genes, includ-
ing DRD2 and DRD4, and in the dopamine transporter gene
DAT1, have also been implicated in stress responsivity, emotion
processing, and susceptibility to PTSD and depression (Segman
et al., 2002; Dunlop and Nemeroff, 2007; Blasi et al., 2009; Ptacek
et al., 2011; Skelton et al., 2012).

SEROTONERGIC SYSTEM
Studies of polymorphic traits of the serotonin transporter gene
SLC6A4 and receptor genes have led to several discoveries regard-
ing the effects of gene × environment interactions on resilience.
A recent meta-analysis of 54 human studies confirmed that the
interaction of stress exposure and the polymorphism in the pro-
moter region of the serotonin transporter gene (5-HTTLPR) is
strongly associated with stress sensitivity and risk for depres-
sion, with the short, less transcriptionally efficient s-allele being
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linked to increased stress sensitivity and risk of developing depres-
sion upon stress exposure (Karg et al., 2011). A particularly
strong association between the s-allele and risk of developing
depression was found in the group with a history of child-
hood maltreatment (Karg et al., 2011; Southwick and Charney,
2012). The s-allele of the 5-HTTLPR gene was also found, in two
independent populations, to interact with childhood and adult
traumatic experiences to increase the risk for PTSD (Xie et al.,
2009). Polymorphisms in several serotonin receptor genes, such as
HTR1A, HTR3A, and HTR2C, have been shown to interact with
stressful life environment as well as polymorphisms from other
genes (e.g., Val66Met in the BDNF gene) to predict susceptibil-
ity to depression (Kim et al., 2007, 2011a; Gatt et al., 2010), and
to mediate HPA-axis activation and emotional response to stress
(Brummett et al., 2012).

BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF)
The role of the BDNF Val66Met polymorphism in stress response
and resilience has not been clarified. A meta-analysis of seven
studies found no significant association between the Val66Met
polymorphism and anxiety disorders (Frustaci et al., 2008).
Specifically, two case-control studies of PTSD found no signifi-
cant association between the Val66Met polymorphism and PTSD
diagnosis (Rakofsky et al., 2012). One study, however, showed
that the Val66Met polymorphism interacted with early life stress
to predict syndromal depression and anxiety, with higher depres-
sion in Met carriers (Met/Met and Met/Val) and higher anxiety
in Val/Val genotype, indicating that both alleles, interacting with
exposure to early life stress, may contribute to mechanisms of
distinct risks (Gatt et al., 2009).

The field of genetics is now moving rapidly to genome-wide
studies on large populations to examine the complex genetic con-
tributions to resilience, with additional genetic polymorphisms,
gene-by-gene and gene-by-environment interactions being cur-
rently identified. As the genetic underpinnings of resilience
become better illuminated, it is anticipated that gene and drug
therapies can be developed specifically for genetic profiles of low
resilience.

EPIGENETIC FACTORS IN RESILIENCE
Epigenetics refers to functional modifications to the genome
without change in the DNA sequence. Such modifications serve
to regulate gene expression and phenotype through mechanisms
such as DNA methylation and demethylation, as well as histone
modifications including methylation, acetylation, and phospho-
rylation. Epigenetic differences can be a consequence of exposure
to stress-related factors during critical periods of development,
and hence contribute to susceptibility to psychiatric disorders
(Tsankova et al., 2007; Dudley et al., 2011).

Several animal studies have found that histone acetylation
or phosphoacetylation in several subregions of the hippocam-
pus increased after exposure to acute stressors (social defeat
stress, forced swim stress, and predator stress) in both mice
and rats, suggesting an adaptive role of these epigenetic changes
in memory formation and stress response (McGowan et al.,
2011; Sun et al., 2013). Intracerebral or systemic administration
of histone deacetylase inhibitors (HDACi), alone or combined

with antidepressants, resulted in antidepressant-like responses
in several animal models (Sun et al., 2013). Histone methyl-
transferases (e.g., GLP, SUV39H1, G9a) are down-regulated in
the nucleus accumbens of susceptible mice exposed to chronic
social defeat stress, while these molecules were up-regulated in
resilient mice exhibiting low depression-like responses, suggest-
ing that histone methylation may be adaptive in the face of
stress and protect against development of depression (Covington
et al., 2011). Maternal care was found to influence stress response
through epigenetic alterations, with offspring of high mater-
nal care showing increased hippocampal GR expression and
enhanced glucocorticoid negative feedback sensitivity, and hence
more modest HPA response to stress, through hypomethy-
lation at the NGFI-A nerve growth factor-inducible protein
A (NGFI-A) binding site of a GR promoter (Weaver et al.,
2004).

Human studies have begun to identify the effects of epige-
netic changes on the regulation of the stress response. Suicide
victims with childhood abuse had increased methylation of a GR
(NR3C1) promoter in the hippocampus, and thereby decreased
hippocampal GR expression, compared to suicide victims with-
out childhood abuse and to control subjects (victims of sudden,
accidental death without childhood abuse) (McGowan et al.,
2009). This finding is consistent with those from animal stud-
ies showing that history of early adversity is associated with
GR expression and stress response in adulthood. Another study
showed that DNA methyltransferase (DNMT) expression was
altered in a region-specific manner in the brains of suicide vic-
tims compared to controls who died of causes other than suicide
(Poulter et al., 2008). This study found increased DNMT-3B
expression in the prefrontal cortex (PFC), and an associated
increase in DNA methylation of the promoter region of the
γ-aminobutyric acid (GABA) A receptor subunit alpha-1 gene
(GABRA1), the product of which was previously demonstrated
to be down-regulated in the brains of suicide victims (Merali
et al., 2004). Higher methylation of MAN2C1, a gene that encodes
α-mannosidase, was shown to interact with greater exposure to
potentially traumatic events to predict an increased risk of life-
time PTSD (Uddin et al., 2011). A number of epigenetic studies in
animal models and humans investigating the association between
epigenetic changes and risk for maladaptive stress responses and
mental illnesses have recently been published (Radley et al., 2011;
Schmidt et al., 2011; Murgatroyd and Spengler, 2012; Rusiecki
et al., 2012).

DEVELOPMENTAL FACTORS IN RESILIENCE
Developmental environment is another crucial contributor to
resilience (Rende, 2012). Severe adverse events in childhood can
negatively affect the development of stress response systems, in
some cases causing long-lasting damage. Numerous rodent and
primate studies suggest that animals abused by their mothers in
the first few weeks of life show both delayed independence and
decreased stress management skills in adulthood (Feder et al.,
2011). These changes are reflected in abnormally high anxiety lev-
els, increased HPA axis activity, and increased basal CRH levels in
the cerebrospinal fluid (CSF) (Strome et al., 2002; Claes, 2004;
McCormack et al., 2006). It is important to note that non-human
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primates, who have suffered childhood abuse, resulting in dam-
aged stress response systems, may be more likely to abuse their
own children (Maestripieri et al., 2007). In this way, the cycle of
abuse is continued through generations.

Similar long-lasting alterations, including changes in the cen-
tral nervous system (CNS) circuits, have been found in studies
of human survivors of childhood trauma (Heim et al., 2010).
Prenatal stress and childhood trauma have been linked to a
hyperactive HPA axis with attendant risk of negative effects
of chronic hypercortisolemia later in life (Frodl and O’Keane,
2012). Furthermore, severe early life stress leads to hyperfunc-
tioning of the locus coeruleus-norepinephrine (LC-NE) system
in adulthood (Feder et al., 2011). One study of police recruits
with a history of childhood trauma found that in contrast to
controls, the police subjects had significantly higher levels of
a salivary metabolite of norepinephrine when watching aver-
sive videos (Otte et al., 2005). Childhood abuse can lead to a
reduction of hippocampal volume, which is frequently seen in
patients with mood disorders (Janssen et al., 2007; Davidson
and McEwen, 2012). As the hippocampus is one of the most
plastic regions of the brain, there is hope that pharmacological
treatments, such as antidepressants, may be able to reverse this
decrease in volume by increasing neural progenitor cells (Boldrini
et al., 2012). PET studies have also revealed decreased activation
in the hippocampus during memory tests in patients with a his-
tory of childhood abuse (Heim et al., 2010). Other brain areas
seem to be affected by childhood abuse as well. For instance,
a recent study suggests that childhood maltreatment has a pro-
nounced effect on two separate neuroimaging markers—reduced
hippocampal volume and amygdala responsiveness to negative
facial expressions (Dannlowski et al., 2012). Chronic, unmanage-
able social and psychological stress, and maltreatment, especially
early in life, are also linked to shorter telomeres, which have
been associated with increased risk of developing somatic dis-
eases such as cancer, diabetes and heart diseases, and psychiatric
disorders, particularly depression (Blackburn and Epel, 2012;
Price et al., 2013).

Certain factors play major roles in determining whether a
childhood traumatic event will lead to vulnerability or instead,
to resilience. One of these factors is the degree of control that the
person has over the stressor (Feder et al., 2011). Episodes of early
uncontrollable stress can lead to “learned helplessness,” where a
person is conditioned to believe that they are unable to change the
circumstances of their situation (Overmier and Seligman, 1967).
Learned helplessness is also used as a model for depression in
animals. When administered inescapable and erratic shocks, ani-
mals tend to develop heightened anxiety states and fear responses
(Overmier and Seligman, 1967). Furthermore, their active coping
is reduced when faced with later stressors. Learned helplessness
in animals is also believed to lead to dysregulation of serotonergic
neurons in the dorsal raphe nuclei (Greenwood et al., 2003), as
well as a reduction of cell proliferation in the hippocampus (Ho
and Wang, 2010). These dysregulations are likely to have severe
negative repercussions on both cognition and mood.

On the other hand, when animals are administered shocks
that are avoidable by behavioral modification, learned helpless-
ness does not seem to develop (Seligman and Maier, 1967). In

this same way, humans that have been able to successfully master
a mild or moderate stressor (for example, the end of a friend-
ship or illness of a parent) appear to be resilient to a variety of
other later stressors (Feder et al., 2009; Russo et al., 2012). This
phenomenon is called “stress inoculation,” and occurs when the
person develops an adaptive stress response and a higher-than-
average resilience to negative effects of subsequent, uncontrollable
stressors (Southwick and Charney, 2012). Stress inoculation is
a form of immunity against later stressors, much in the same
way that vaccines induce immunity against disease (Rutter, 1993).
Research in rodents supports the stress inoculation hypothesis
and has suggested that this protection against some of the later
negative effects may be due to neuroplasticity in the PFC induced
by stress inoculation (Southwick and Charney, 2012). In one
study, young monkeys were presented with a controllable stres-
sor (periodic short maternal separations) over a course of 10
weeks (Parker et al., 2004). These monkeys experienced acute
stress during the separation periods, illustrated by agitation as
well as temporary increased levels of cortisol. Yet, at 9 months
of age, they experienced less anxiety and lower basal stress hor-
mone levels than monkeys who did not undergo the separations.
Additionally, at later time points, the group of stress-inoculated
monkeys showed higher cognitive control, higher curiosity in a
stress-free situation and larger ventromedial PFC volume (Parker
et al., 2005; Lyons et al., 2009).

It is important to note that although research has outlined
numerous ways in which developmental environment can nega-
tively impact a person, resilience is in fact a common trait, follow-
ing even the most severe adversities. Between 50 and 60% of the
general population experience a severe trauma during their life-
time, yet the prevalence of PTSD is estimated at 7.8% (Russo et al.,
2012). Other studies have found that neural circuits involved in
resilience can be modified for many years after adversity. For
instance, the majority of adolescents whose development was
stunted in childhood due to trauma were able to developmentally
“catch-up” when relocated to a supportive, loving environment
(Masten, 2001; Rutter, 2012a). The fact that not all animals or
humans exposed to uncontrollable traumatic experiences develop
stress-related disorders clearly implies that environmental factors
interact with genetic endowment and together, affect resilience.
In fact, resilient genes may be sufficient to help a person over-
come the most traumatic developmental events in some cases
(Feder et al., 2011).

IMPLICATIONS FOR PROMOTING RESILIENCE IN CHILD REARING
The findings that the developmental environment has significant
effects on building and enhancing resilience from a young age
impart clear messages for child rearing. Several large-scale lon-
gitudinal studies have investigated resilience in participants from
childhood or adolescence through the transition to adulthood.
Results from these studies strongly indicated that key factors
including positive family functioning and peer relationships, con-
nections to supportive adults and prosocial romantic partners,
planfulness, self-discipline, and cognitive ability, all contribute to
a more successful transition to adulthood and more resilient func-
tioning (Burt and Paysnick, 2012). Interventional paradigms in
the form of foster care, adoption, and parent training can improve
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the quality of parenting, family function, and attachment rela-
tionship, and in turn promote adaptive functioning and resilience
in children and youth (Sapienza and Masten, 2011).

Children with a history of maltreatment showed lower resilient
functioning than those without maltreatment (Cicchetti and
Rogosch, 2012). Children with exposure to war and related trau-
matic experiences (e.g., child soldiers, rape, bombing, forced
displacement) showed increased risks for PTSD as well as other
medical conditions such as cardiovascular diseases in adulthood
(Werner, 2012). Protective factors against deleterious impact of
war-related adversities in children include a strong, positive bond
between the primary caregiver and the child, the social sup-
port from teachers and peers, a shared sense of values, religious
beliefs that find meaning in suffering, and humor and altru-
ism as defense mechanisms (Werner, 2012). Besides children
from an abusive and life-threatening environment, a newly iden-
tified group at risk is youth from affluent families, who may
face higher risk of adjustment problems (e.g., substance use,
depression, and anxiety) (Luthar and Barkin, 2012). Parents’ lax
repercussions on discovering substance use was shown to be a
major vulnerability factor. Moreover, the levels of teens’ symp-
toms (rule breaking, anxious-depressed, and somatic symptoms)
were found to correlate more strongly with the teens’ relation-
ships with mothers than with fathers, which may in part reflect
greater amount of time spent with mothers, who are generally the
primary caregivers of their children. Therefore, positive changes
in parenting for affluent youth are of critical importance, includ-
ing adopting a strict zero-tolerance policy regarding students’ law
breaking, remaining vigilant about their children’s activities out-
side school, and engaging in talks and workshops for families
in distress and holding support groups particularly for mothers
(Luthar and Barkin, 2012).

A review of efficacy of different interventions for children
and adolescents with a history of trauma exposure indicates that
cognitive-behavioral treatment, in both individual and group for-
mats, is effective in reducing psychological harm such as anxiety
and depressive disorders and symptoms (Wethington et al., 2008).
Stress inoculation training (SIT), a preventive and interventional
cognitive-behavioral paradigm, has been shown to be helpful
in reducing anxiety and stress-related symptoms in adolescents
(Maag and Kotlash, 1994). School-based interventions, including
SIT, can improve adaptive coping skills and decrease the likeli-
hood of developing PTSD symptoms in children exposed to war
(Werner, 2012).

In summary, it is critical to provide children with a lov-
ing, healthy and supportive environment as they grow up, to
avoid exposing them to repeated unmanageable stress, and to
offer them chances to embrace and conquer life challenges so
as to develop mastery of critical life stressors and acquire “stress
inoculation” (Southwick and Charney, 2012). Education on suc-
cessful parenting should be able to help to foster children in a
resilience-promoting environment and to minimize occurrence
of impaired stress response through generations. Moreover, train-
ing programs for children that focus on constructing and main-
taining supportive social networks, enhancing prosocial behavior
and cognitive reappraisal, and promoting coping self-efficacy and
self-esteem, can all contribute to resilience building from an early
age (Figure 1).

PSYCHOLOGICAL FACTORS IN RESILIENCE
Significant research has been done on the psychosocial factors
of stress tolerance and resilience building (Duryea et al., 1990;
Chemtob et al., 1997; Pietrzak et al., 2010). Cognitive processes,
personality traits, and active coping mechanisms, among others,

FIGURE 1 | Promoting resilience in child rearing.
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contribute to resilience. These qualities also interact with biolog-
ical factors to enhance adaptation in the face and aftermath of
traumatic events, and confer resilience (Charney, 2004).

INDIVIDUAL CHARACTERISTICS AND BEHAVIORS
Characteristics such as high level of intellectual functioning, effi-
cient self-regulation, active coping styles, optimism, and secure
attachment were observed in youth who had faced adverse situa-
tions and settings, yet did not succumb to the adverse impact of
extreme stress (Richardson, 2002).

Optimism
Positive affect has been found to be protective in the face of
stress in numerous studies. In addition to decreasing autonomic
arousal upon stress exposure (Folkman and Moskowitz, 2000),
positive affect is also associated with quicker recovery times and
better overall physical health (Scheier et al., 1989; Warner et al.,
2012). Similarly, optimism, herein defined as the expectation for
good outcomes, has been consistently associated with the employ-
ment of active coping strategies, subjective well-being, physical
health, and larger and more fulfilling social networks and connec-
tions (Stewart and Yuen, 2011; Galatzer-Levy and Bonanno, 2012;
Gonzalez-Herero and Garcia-Martin, 2012; Colby and Shifren,
2013). Unlike pessimists, optimists reported less hopelessness and
helplessness and are less likely to use avoidance as a coping mech-
anism when under duress (e.g., among breast cancer patients)
(Carver et al., 2010).

Cognitive reappraisal
Strongly associated with resilience is the ability to monitor and
assess negative thoughts and replace them with more positive
ones, or cognitive reappraisal (McRae et al., 2012). Known as
cognitive flexibility or cognitive reframing, this emotion regu-
lation strategy involves changing the way one views events or
situations. Consciously reassessing adverse or traumatic events to
find the silver lining is associated with resilience (Gross, 2002).
Viktor Frankl, the author of Man’s Search for Meaning and the
founder of logotherapy, attributed his psychological endurance
and survival of concentration camps mainly to “meaning find-
ing,” the belief that the striving to find a meaning in one’s life
is the most important, powerful motivating and driving force
to continue living (Frankl, 2006). In a study examining cogni-
tive protective factors in the face of stress, women with high
cognitive reappraisal ability exhibited less depressive symptoms
than their cohorts with low cognitive reappraisal ability (Troy
et al., 2010). Attachment style may also play a role in reap-
praisal ability and resilience. In a study of 632 men and women,
researchers found that secure attachment was associated with
higher cognitive reappraisal and resilience and that these two
factors partially mediated individuals’ well-being (Karreman and
Vingerhoets, 2012). Securely attached participants were more
likely to reframe situations as less emotional and less likely to
suppress emotional expression. As expected, preoccupied attach-
ment was inversely related to well-being due to less utilization of
cognitive reappraisal.

A possible gender difference in emotional regulation/cognitive
reappraisal is of note. Neural data suggest that women might

employ positive emotions to help them regulate their emotions
to a larger extent than men; it is possible that in men, use
of emotion regulation is more automatic (McRae et al., 2008).
Utilizing a randomized control design, an intervention study
in Israeli citizens under ongoing war stress found that gender
might act as a moderator in the development of resilience and
reduction of helplessness (Farchi and Gidron, 2010). While the
“psychological inoculation” intervention was expected to increase
coping self-efficacy and to improve mental resilience more
so than ventilation, the intervention’s efficacy differed by sex.
Psychological inoculation, possibly augmenting self-efficacy and
hope, appeared to decrease helplessness in men, while the venti-
lation intervention appeared to decrease helplessness in women.
The ventilation intervention may have had calming effects and
lent a sense of connectedness that was helpful to women.

Active coping
Coping, using behavioral or psychological techniques utilized to
reduce or overcome stress, has been linked to resilience in indi-
viduals (Feder et al., 2009) and is coming to be recognized for its
intervention potential (Taylor and Stanton, 2007). The literature
distinguishes between active coping, involving behavioral and/or
psychological strategies to change qualities of the stressor, the
stressor itself, or how the stressor is perceived, and avoidant cop-
ing, involving activities and mental processes that are employed
in lieu of dealing directly with the stressful trigger (Chesney
et al., 2006). Emotional or behavioral withdrawal, alcohol use,
and other substance use are classic examples of avoidant coping
behavior (Lawler et al., 2005). While individuals who primar-
ily exercise avoidant coping are at risk of psychological distress
and subsequent negative responses, active coping has consistently
been associated with adaptability and psychological resilience
(Holahan and Moos, 1987; Moos and Schaefer, 1993). Among
chronic pain patients, passive coping strategies were correlated
with psychological distress and depression, while active coping
strategies were inversely correlated with psychological distress
(Snow-Turek et al., 1996). In a study examining two groups of
Israeli veterans and former POWs, Solomon and colleagues found
that high sensation seeking and low sensation seeking POWs sig-
nificantly differed in their subjective assessments of suffering,
use of coping methods, and emotional states while in prison
(Solomon et al., 1995). Low sensation seeking former POWs
reported more symptoms of PTSD and other psychiatric symp-
toms. Further distinguishing coping styles, task-oriented coping
was positively correlated with resilience while emotion-oriented
coping was related to low resilience among undergraduate stu-
dents (Campbell-Sills et al., 2006). Drawing a relationship with
personality, resilience among these young adults was inversely
related with neuroticism but positively so with extraversion and
conscientiousness. Even among sport performers, individuals
with high hardiness or resilience tend to employ active coping
strategies during stressful (competitive) situations compared with
low hardiness groups (Hanton et al., 2013).

Social support
Both the presence of social support and the behavior of seeking
social support have been associated with psychological hardiness
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and flourishing in the face of major adverse life events (Ozbay
et al., 2008). The inverse also appears to be true; poorer social
support has been linked to psychiatric disorders including PTSD
(Tsai et al., 2012). Research with cancer patients found depression
to be correlated with poor social support and higher exter-
nal locus of control (Grassi et al., 1997). Depressed patients
consistently reported weak or a lack of support from family,
friends, and other social contacts (such as neighbors, colleagues,
and less intimate relatives). Such patients were also often char-
acterized by early maladjustment to their diagnosis of cancer
(Grassi et al., 1997).

Humor
Humor has been identified as a form of active coping contribut-
ing to resilience not only for its capability for alleviating tension
and but also for its ability to attract social support (Vaillant,
1992). Humor is widely used by veterans, repatriates, terminally
ill patients, and youth alike and has been shown to be protec-
tive against stress (Southwick and Charney, 2012). Cameron and
colleagues employed an ecological research method to examine
the type and role of humor in resilient adolescents’ daily social
functioning and found that humor served various socioemotional
functions and was a buffer in risky situations (Cameron et al.,
2010). In a study of 215 sojourn students from Mainland China
studying at a Hong Kong university, humor was seen as impera-
tive to students’ ability to adjust to the new culture and thrive in
the face of acculturative stress (Cheung and Yue, 2012). In fact,
humor increased with an increase in frequency of acculturative
hassles.

Physical exercise
Physical exercise has positive effects on psychological well-being
as well as mood, clinical depression, and self-esteem. Physical
exercise has been shown to affect neurobiological factors of
resilience in animal (Fleshner et al., 2011) and human studies
(Wittert et al., 1996; Winter et al., 2007). In a 10-year study of
424 depressed adult patients, Harris and colleagues examined the
relationship between physical activity, exercise coping and depres-
sion at 1-year, 4-year, and 10-year follow-up points (Harris et al.,
2006). While no significant relationship between physical activ-
ity and subsequent depression was found, physical activity was
negatively correlated with concurrent depression. In other words,
physical activity may be beneficial to those currently depressed or
facing major stressors. Moreover, in a rat model of depression,
voluntary running had antidepressant-like effects in behavioral
tests and in parallel enhanced NPY expression and neurogenesis
(Bjornebekk et al., 2005, 2006).

Prosocial behavior
Altruism has also been associated with resilience in both adults
and children (Southwick et al., 2005; Leontopoulou, 2010). Staub
and Vollhardt examined case studies and qualitative studies where
individuals’ victimization and suffering bred prosocial behav-
ior, ultimately promoting recovery from trauma, post-traumatic
growth, and resilience, and suggested that post-traumatic inter-
ventions may promote “altruism born of suffering” (Staub and
Vollhardt, 2008). A study of 232 elementary school children in

Greece showed that higher altruism resulted in lower classroom
competitiveness and was associated with higher empathy and
resilience (Leontopoulou, 2010). Studies also show the birth of
prosocial behavior and action from trauma enduring during
times of civil conflict and unrest as a byproduct of personal
healing (Hernández-Wolfe, 2010).

Trait mindfulness
Trait mindfulness is another psychological factor associated with
resilience. Originated as a Buddhist meditation practice, mind-
fulness concentrates on moment-to-moment awareness of bod-
ily activities, feelings, emotions, or sensations, while purposely
perceiving and discarding any distracting thoughts that come
into awareness (Thompson et al., 2011). Studies on trait mind-
fulness suggest that strong pre-trauma mindfulness skills may
help prevent ruminative, depressogenic thinking, thereby coun-
teracting the development of depression and PTSD symptoms
following trauma (Thompson et al., 2011). A study of 124 fire-
fighters showed that trait mindfulness was negatively related
to depressive and PTSD symptoms, physical symptoms, and
alcohol problems, suggesting that trait mindfulness may reduce
avoidant coping in response to stress and contribute to resilience
(Smith et al., 2011).

MORAL COMPASS
The existence of a moral compass or an internal belief system
guiding values and ethics is commonly shared among resilient
individuals (Southwick et al., 2005). Though religion or spiri-
tuality is often a facet in one’s moral compass, the concept of a
moral compass is grounded in a more innately human belief in
morality. A study of 121 outpatients diagnosed with depression
and/or an anxiety disorder showed that a low or lack of purpose
in life and less frequent physical exercise were correlated with low
resilience, but low spirituality prevailed as a leading predictor of
low resilience (Min et al., 2012). Similarly, purpose in life was
a key factor linked to resilience in a study of 259 primary care
patients with a history of exposure to a range of severe traumatic
events (Alim et al., 2008).

NEUROCHEMICAL FACTORS IN RESILIENCE
A number of neurochemicals have been found to be involved
in resilience. These neurochemicals have been shown to interact
with and to balance each other to produce regulatory effects on
acute and long-lasting adaptations to stress.

NPY
NPY is widely distributed in the brain (Wu et al., 2011; Sah
and Geracioti, 2012). It counteracts anxiogenic effects of CRH in
several brain regions that regulate stress and anxiety, including
the hypothalamus, hippocampus, amygdala, and locus coeruleus
(Sajdyk et al., 2004). Many studies on animal models and humans
have confirmed the beneficial role of NPY in mediating resilience
and vulnerability to stress and anxiety. Animals with PTSD-like
behaviors showed a significant down-regulation of NPY in sev-
eral brain regions including the amygdala and hippocampus,
and centrally administered NPY reversed the negative behav-
ioral effects of predator-scent stress (Cohen et al., 2012). Human

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 10 | 7

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Wu et al. Neurobiology of resilience and implications for promoting resilience

studies found that, under uncontrollable stress induced by harsh
military training, plasma NPY levels were markedly increased,
and higher NPY levels were associated with better behavioral
performance and stress response (Morgan et al., 2000, 2002).
Higher plasma NPY levels were also found in combat-exposed
veterans without PTSD than in those with PTSD (Yehuda et al.,
2006). Significantly lower NPY levels in CSF were found in men
with combat-related PTSD compared to healthy controls with-
out PTSD (Sah et al., 2009). Thus, a wealth of studies indicate a
positive correlation between NPY levels and resilience to deleteri-
ous effects of stress, and suggest a potential pharmacotherapeutic
target for effectively reducing anxiety and enhancing resilience to
adversity and stress. Studies are currently being conducted in this
regard, using possibly effective delivery routes such as intranasal
administration.

HPA AXIS
Upon stress exposure, CRH is released from the hypothalamus
and acts on the pituitary gland, causing it to release adrenocorti-
cotropic hormone (ACTH), which in turn stimulates the adrenal
cortex to release cortisol and dehydroepiandrosterone (DHEA).
Cortisol exerts negative feedback effects on the hypothalamus
and pituitary, suppressing CRH and ACTH production, while
DHEA is thought to have anti-glucocorticoid effects by inhibit-
ing or blocking the effects of cortisol (Jones and Moller, 2011).
This complex set of feedback interactions constitutes the HPA
axis, which is a key neuroendocrine player modulating behavioral
responses to stress (Russo et al., 2012).

Cortisol levels are linked to risk and resilience to stress-related
psychiatric disorders, with higher levels associated with depres-
sion (Nemeroff and Vale, 2005), and lower levels with PTSD either
as a possible trait that predisposes to the development of PTSD
or as a consequence of trauma (Radley et al., 2011; Binder and
Holsboer, 2012). DHEA together with DHEA sulfate (DHEA-S),
have also been implicated in stress response and psychiatric dis-
orders, with lower levels of DHEA(S) associated with depression,
and elevated levels of DHEA(S) associated with PTSD (Maninger
et al., 2009; Rasmusson et al., 2010). Of note, some studies have
generated mixed findings (Hoge et al., 2007; Maninger et al.,
2009). Because cortisol and DHEA(S) are released synchronously
and function together through their antagonistic, dualistic home-
ostasis, the DHEA(S)/cortisol ratio has been found to be a crucial
parameter that indicates differential stress vulnerability (Morgan
et al., 2004; Markopoulou et al., 2009; Jones and Moller, 2011;
ó Hartaigh et al., 2012).

CRH and its two receptors, CRHR-1 and CRHR-2, are impor-
tant mediators of stress response (Southwick et al., 2005). In
depression and PTSD, increased CRH levels in CSF have been
found, which may relate to the dysregulation of signal transduc-
tion via the two receptors (Charney, 2004). CRHR-1 and CRHR-2
are differentially distributed in the brain, with CRHR-1 primarily
found in the neocortex, basolateral amygdala, and hippocampus,
and CRHR-2 in the lateral septum, medial and cortical nuclei
of the amygdala, and dorsal raphe (Holsboer and Ising, 2010).
CRHR-1 signaling plays a crucial role in anxiogenic circuits and
contributes to anxiety-like response to stress. Consequently, pre-
clinical and clinical studies have examined the antagonism of

CRHR1 as a potential therapeutic intervention targeting aberrant
CRH levels in mood and anxiety disorders and have generated
some encouraging results (Paez-Pereda et al., 2011). CRHR-2
mainly modulates the effects of CRHR-1 signaling and can be
either anxiolytic or anxiogenic depending on the circumstances
(Hauger et al., 2009; Binder and Nemeroff, 2010).

NORADRENERGIC AND DOPAMINERGIC SYSTEMS
The noradrenergic system is activated upon stress, resulting in
increased release of norepinephrine primarily from the locus
coeruleus to its many projection sites that modulate stress
responses and emotional behaviors, including the amygdala,
hippocampus, hypothalamus and PFC, all of which constitute
the LC-NE system (Aston-Jones and Cohen, 2005; Strawn and
Geracioti, 2008). The activation of the LC-NE system under
acute stress leads to generation and transmission of negative
emotional memories starting from the amygdala, a process that
can be inhibited by blocking norepinephrine activity (Charney,
2004). Hyperresponsiveness of the LC-NE system may result in
chronic anxiety and fear (Feder et al., 2009). An imaging study
in humans showed that disinhibited norepinephrine signaling
may contribute to the etiology of PTSD by enhancing baso-
lateral amygdala responses to fear stimuli (Onur et al., 2009).
The norepinephrine transporter (NET) and receptors (α- and β-
adrenoreceptors) involved in norepinephrine signaling have been
implicated as biological mediators of stress-related psychiatric
disorders and resilience (Krystal and Neumeister, 2009; Jhaveri
et al., 2010). Dopamine release upon stress is increased in the PFC
and inhibited in the nucleus accumbens, an area mainly associ-
ated with the reward pathway (Charney, 2004). Some studies have
found decreased levels of circulating dopamine in depression and
elevated urinary and plasma dopamine concentrations in PTSD
(Charney, 2004; Dunlop and Nemeroff, 2007). A recent imag-
ing study in humans showed that striatal dopamine transporter
(DAT) density was higher in PTSD patients than in trauma-
tized controls, suggesting a possible higher dopamine turnover
in PTSD that can contribute to potentiation of exaggerated fear
response to a stressful stimulus (Hoexter et al., 2012). Dopamine
D1 and D2 receptors can form heterodimers by binding directly
to each other, and these heterodimers were markedly elevated in
the striatum in postmortem brains from patients with depression
(Pei et al., 2010). Disrupting the coupling of D1 and D2 receptors
has been shown to produce antidepressant-like effects, provid-
ing a possible novel target for antidepressant treatment (Pei et al.,
2010; Wong and Liu, 2012).

SEROTONERGIC SYSTEM
Serotonin is one of the most studied neurotransmitters in rel-
evance to mood and anxiety. Acute stress leads to increased
serotonin turnover in multiple brain areas, including the amyg-
dala, hypothalamus, PFC and nucleus accumbens (Feder et al.,
2009). Serotonin affects the regulation of stress response and
emotional behaviors through 5-HT1−7 receptors in separate brain
regions. The 5-HT1A receptor is anxiolytic and may play an
important role in the etiology of anxiety disorders. Animal stud-
ies have found anxiety-like behaviors after knocking out 5-HT1A

(Akimova et al., 2009). A few human imaging studies have also
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showed decreased 5-HT1A binding and functioning in the amyg-
dala, anterior cingulate cortex and raphe nuclei in patients with
anxiety disorders compared to healthy controls (Akimova et al.,
2009). The 5-HT2A receptor, on the other hand, is thought to
be anxiogenic, and 5-HT2A antagonists prevent anxious behav-
ior and dysregulated stress responses following early life stress
(Benekareddy et al., 2011). Other serotonin receptors (such as
5-HT1B and 5-HT2C) have also been implicated in adaptive
responses to stress (Krystal and Neumeister, 2009). For example,
overexpressing 5-HT1B in the caudal dorsal raphe nucleus led to
reduced conditioned fear and helplessness in animal stress models
(McDevitt et al., 2011).

BDNF
BDNF, a neurotrophic factor expressed in various brain regions
including the amygdala, hippocampus, PFC and basal fore-
brain, is implicated in mood and anxiety disorders (Yamada and
Nabeshima, 2003; Angelucci et al., 2005; Duman, 2009). BDNF
supports neuronal proliferation, differentiation and growth dur-
ing development, and promotes neuronal survival and func-
tioning in adulthood (McAllister, 2002). Several studies have
shown down-regulation of BDNF in the hippocampus after
exposure of animals to various types of stress, and in post-
mortem studies of suicide-depression patients (Duman and
Monteggia, 2006; Duman, 2009). Hippocampal BDNF expres-
sion contributed critically to resilient adaptations to chronic
stress (Taliaz et al., 2011). BDNF acts through its two main
receptors, TrkB and p75 (Castren and Rantamaki, 2010). The
BDNF-TrkB pathway has been associated with both PTSD in
humans and in animal models of fear conditioning, extinc-
tion and inhibitory learning (Mahan and Ressler, 2012). Central
administration of BDNF has antidepressant-like effects and can
enhance hippocampal neurogenesis (Li et al., 2008; Autry and
Monteggia, 2012). Evidence from animal and human stud-
ies shows that administration of antidepressants can lead to
increase of BDNF and TrkB expression in the hippocampus and
PFC, suggesting a role of BDNF-TrkB signaling in the behav-
ioral effects of antidepressants (Masi and Brovedani, 2011).
Nevertheless, there is also evidence for antidepressant effects
without changes in BDNF or neurogenesis (David et al., 2009;
Petersen et al., 2009; Hansson et al., 2011). Much less work has
been done regarding the exact role of the BDNF-p75 signaling
pathway in resilience, probably due to the low affinity of p75
(Numakawa et al., 2010).

GLUTAMATE, GABA, AND ENDOCANNABINOIDS
Glutamate, GABA, and endocannabinoids have also been widely
studied and implicated in the stress response, resilience, and
pathophysiology of mood and anxiety disorders (Harvey and
Shahid, 2012; Hill, 2012; Sanacora et al., 2012). The dysregu-
lation of these systems can lead to profound deficits in suc-
cessful adaptation to acute and chronic stress. Pharmacological
studies targeting these systems in psychiatric disorders have
begun to show promising results in achieving therapeutic
effects (Hill and Gorzalka, 2009; Murrough and Charney, 2010;
Kirilly et al., 2012; Mathew et al., 2012; Mathews et al.,
2012).

NEURAL CIRCUITRY OF RESILIENCE
Animal and human studies have investigated the brain circuits
implicated in mood and anxiety and have shown that dysregu-
lated functions and interactions among these circuits can result
in low resilience phenotypes (Feder et al., 2009; Franklin et al.,
2012). The reward and fear circuits play critical roles in the devel-
opment of resilient character traits and adaptive social responses
to stress.

NEURAL CIRCUITRY OF REWARD
Enhanced functioning of the reward circuitry contributes to
resilience to stress and trauma (Charney, 2004). A key reward
circuit is the mesolimbic dopamine pathway, which carries
dopamine signaling from the ventral tegmental area of the mid-
brain to the nucleus accumbens in the limbic system, and also
to other brain regions such as the amygdala, hippocampus,
and medial PFC. The mesolimbic dopamine pathway is linked
to behavioral responses to rewards (e.g., food, sex, and drugs
of abuse), and functional abnormalities in this pathway can
contribute notably to key depressive symptomatology such as
anhedonia, decreased energy, and reduced motivation seen in
individuals with depression (Nestler and Carlezon, 2006). Studies
have shown that the onset of depression is likely to happen dur-
ing adolescence, when reward functioning is generally higher than
during childhood and adulthood, and that increased reactivity in
the medial PFC and decreased reactivity in the striatum are impli-
cated in adolescent depression (Forbes and Dahl, 2012). Children
of depressed parents, therefore at high risk for depression, showed
altered amygdala and nucleus accumbens activation to affective
stimuli compared to those of non-depressed parents, therefore
at low risk for depression (Monk et al., 2008). Depressed and
PTSD patients showed weakened responses to rewards in the stri-
atal areas including the nucleus accumbens (Sailer et al., 2008;
Pizzagalli et al., 2009). Deep brain stimulation in the nucleus
accumbens has antidepressant, anti-anhedonic and anxiolytic
effects in patients with treatment-resistant depression, suggest-
ing that modulating a dysfunctional reward system can lead to
improvement of the core symptoms in depression (Schlaepfer
et al., 2008; Bewernick et al., 2010). Although compelling evi-
dence has shown that an enhanced, highly functional reward
system may be beneficial for positive, adaptive response to stress,
one study found that Special Forces soldiers of high resilience
showed less activation in the subgenual PFC and nucleus accum-
bens under a high-reward condition compared to healthy civilian
controls, suggesting that a potentially “sturdy” reward system
may contribute to resilience (Vythilingam et al., 2009). The exact
role of the reward system and the associated neurotransmit-
ters in the development of resilience and pathophysiology and
even etiology of stress-related psychiatric disorders needs further
elucidation.

NEURAL CIRCUITRY OF FEAR
Resilience to extreme stress entails the ability to avoid exces-
sive overgeneralized fear responses and to enhance favorable
reconsolidation and extinction processes related to fear memo-
ries (Charney, 2004). Several studies have identified the com-
ponents of the neural circuitry of fear response, which includes
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the amygdala, hippocampus, medial PFC, nucleus accumbens,
ventromedial hypothalamus, and a number of brain stem nuclei
(Davis, 2006; Maren, 2008; Quirk and Mueller, 2008). These
regions play key roles in fear processing including the fear learn-
ing/conditioning, perception of threat, execution of efferent com-
ponents of fear response, and modulation of fear memories
through potentiation, consolidation, reconsolidation, and extinc-
tion (Shin and Liberzon, 2010). Patients with PTSD showed
hyperactivation in the amygdala and hypoactivation in the ven-
tromedial PFC and anterior hippocampus, which may indicate
reduced top-down inhibition of the amygdala and account for
exaggerated fear responses (Etkin and Wager, 2007). Other brain
regions such as the dorsal anterior cingulate cortex and insular
cortex have also been implicated in the maladaptive regulation of
fear responses in PTSD, with some studies showing hyperrespon-
siveness and some showing hyporesponsiveness of these regions
(Shin and Liberzon, 2010). Compared to trauma victims without
PTSD, individuals with PTSD demonstrated behavioral sensiti-
zation to stress, overgeneralization of the conditioned stimulus
(CS)-unconditioned stimulus (US) response, impaired CS-US
pairings and impaired fear inhibitory learning, all of which are
thought to be characteristic of dysregulated fear responses and
can result in the core symptoms seen in PTSD, such as intrusive
memories and flashbacks, enhanced avoidance of reminders, and
autonomic hyperarousal (Mahan and Ressler, 2012). One study
found higher potentiation of the startle response to safety cues
in patients with PTSD compared to traumatized controls, and
that this impaired fear inhibition may be associated with altered
HPA-axis functioning in PTSD (Jovanovic et al., 2010).

Animal studies have shown that proper fear conditioning and
extinction learning require synaptic plasticity, and thus impaired
synaptic plasticity may underlie impaired fear and extinction
processes in PTSD (Mahan and Ressler, 2012). The BDNF-TrkB
signaling pathway, a ligand-receptor system involved in synaptic
plasticity, has been shown to be necessary for sustaining nor-
mal functioning of fear conditioning, extinction, and inhibitory
learning in three brain regions, the amygdala, hippocampus, and
medial PFC, all of which are associated with PTSD (Mahan and
Ressler, 2012). Consolidation of fear conditioning and extinction
was impaired when BDNF signaling was inhibited in the amyg-
dala (Rattiner et al., 2004; Chhatwal et al., 2006). Heterogeneous
BDNF knockout mice (BDNF±) demonstrated malfunctioning
contextual fear conditioning, which can be partially reversed with
recombinant BDNF infusion into the hippocampus (Liu et al.,
2004). Altered BDNF expression in the prelimbic and infralim-
bic areas of the medial PFC can also lead to functional changes
in fear consolidation and expression, suggesting a role of BDNF
as a key mediator of neural plasticity in these regions (Choi et al.,
2010; Peters et al., 2010). Glutamatergic and GABAergic signal-
ing pathways have also been implicated in the regulation of fear
consolidation, expression and extinction (Mahan and Ressler,
2012). For instance, disrupting NMDA and AMPA receptor func-
tioning impaired the extinction of fear conditioning (Dalton
et al., 2008; Liu et al., 2009; Zimmerman and Maren, 2010).
Other ligand-receptor signaling systems such as those involving
norepinephrine, nitric oxide, endocannabinoids, dopamine and
acetylcholine have also been shown to play a modulatory role in

the consolidation and extinction of fear conditioning, primarily
by modulating glutamatergic and GABAergic signaling (Mahan
and Ressler, 2012). These neurochemical systems involved in the
fear circuitry provide potential pharmacological targets for reduc-
ing dysregulated fear response in PTSD and enhancing resilience
to inappropriate fear associations in individuals susceptible to
stress-related psychiatric disorders.

ADDITIONAL NEURAL CIRCUITRY OF RESILIENCE
Neural circuits underlying psychological characteristics that ren-
der adaptive social behavior and promote resilience in individ-
uals have been examined. Psychobiological qualities important
in prosocial behavior include emotion regulation, empathy, and
altruism, among others (Charney, 2004; Feder et al., 2009).
Animal and human studies have identified functional neural cir-
cuits and interactions among multiple brain regions, such as the
amygdala, PFC and nucleus accumbens, that are involved in the
regulation of adaptive psychobiological responses to stress and
adversities (Charney, 2004; Feder et al., 2009; Kim et al., 2011b;
Cusi et al., 2012; Morishima et al., 2012). Reduced Insular activa-
tion under stress has been linked to greater non-reactivity to inner
experience, a key component of trait mindfulness which may
protect against negative bias and reduce depression vulnerabil-
ity (Paul et al., 2013). By potentially targeting the top-down and
bottom-up regulation of these neural circuits, psychotherapeutic
interventions including cognitive behavioral therapy with cogni-
tive reappraisal, positive emotion exercises, coping skill training,
well-being therapy, and mindfulness meditation, can be effica-
cious approaches to build and enhance resilient psychosocial
responses to stress (Southwick and Charney, 2012).

SUMMARY
Resilience is a complex multidimensional construct and the study
of its neurobiology is a relatively young area of scientific inves-
tigation (Southwick and Charney, 2012). Multiple interacting
factors including genetics, epigenetics, developmental environ-
ment, psychosocial factors, neurochemicals, and functional neu-
ral circuitry, play critical roles in developing and modulating
resilience in an integrated way. For instance, genetic and epige-
netic factors interact with each other and determine the biological
characteristics and regulation of neurochemicals and receptors.
Environmental factors influence these characteristics and reg-
ulation processes through gene and environment interactions
throughout development, contributing to adaptive changes in
gene regulation, plasticity in the growth and modulation of neu-
rocircuits, and the shaping of psychological factors and behavioral
endpoints that underlie the manifestation of resilience.

Our growing understanding of the neurobiology of resilience
has significant implications for the prevention and treatment
of stress-related psychiatric disorders. Pharmacological interven-
tions targeting the neurochemical systems involving NPY, BDNF,
CRH, and HPA axis, among others, are being investigated as
potential treatments for depression and PTSD. For instance, phar-
macological agents targeting the hyperactivity and malfunction
of HPA axis and CRH can possibly reduce the likelihood of
pathological response to stress. Also, for individuals with altered
NPYergic system, enhancing NPY levels and function may help
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to improve stress and anxiety regulation and to minimize the
anxiogenic effects of CRH (Southwick and Charney, 2012).

Behavioral training targeting psychosocial risk factors and
related neural pathways is also likely to increase resilience to
stress (Karatsoreos and McEwen, 2011). Practice and training on
enhancing stress-protective factors can lead to augmented plas-
ticity and regulation of neural circuits that modulate reward
and motivation, fear response, learning memory, emotion reg-
ulation, attention, cognitive executive function, adaptive social
behavior, and cognitive reappraisal, thereby result in improved
adaptation to stress and trauma, increased speed of recovery
from adversities, and decreased susceptibility to stress-related
psychopathology throughout life (Southwick and Charney, 2012).
Furthermore, maintaining a supportive environment and pro-
viding resilience-building classes for child rearing can be partic-
ularly beneficial, in that children can learn how to master life
challenges and acquire “stress inoculation” while growing up,

enabling them to adaptively react to and master future challenges
and stressors, thereby reducing susceptibility to stress-related
psychopathology.

How to apply what we currently know about resilience to
further the promotion of resilience and the prevention and treat-
ment of stress-related psychopathology is one of the most crit-
ical questions for future studies. In addition, multidisciplinary
research on the neurobiology of resilience should help to fur-
ther identify risk and protective factors as well as their complex
interactions and thereby facilitate the development of evidence-
based interventions for enhancing resilience and mitigating risk
for stress-related psychiatric disorders.
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